
An Automated Sequence Model Testing (ASMT)
For Improved Test Case Generation Using Cloud

Integration
 Ms. Priya Purohit(Research Scholar, RGTU) Mr. Yunus Khan(Assistant Professor)

 Dept. of CSE Dept. of CSE
 JIT Vidya Vihar JIT Vidya Vihar

 Borawan(Khargone),MP(India) Borawan(Khargone),MP(India)

Abstract - Software quality assurance is primarily done by
means of testing an activity that faces constraints of both time
& resources. Traditional testing strategies obliged the
overwhelming resources and infrastructure and it can be
carried out after the completion code is created. So to apply
some changes after the development obliges loads of effort &
cost. It likewise affects the time of deployment. So model
based testing is a generally accepted & dynamic approach for
quality improvements because it gives affecting mistake
detection easily. It gives scalable & systematic solution to the
test case reduction problem. To better understand the need of
this early test case generation general scenario of
collaboration & development strategies is to be considered.
The most ideal approach to improve learning of internal
structure design models is the best choice. In this manner, in
this work we are focusing our research on the path based
testing by which internal structure of complete design can be
confirmed & tested. Model based testing on path coverage is
connected with standard coverage criteria for the expansive
software's & generates bigger test counts. Our aim is to
reduce those test counts with maximum coverage of testing at
the early phases of SDLC even before the actual development
begins.
This paper proposes a novel automated sequence model based
testing (ASMT) integrated with the cloud; this approach
selects the test criteria based on UML diagram like activity,
etc... Integration of the ASMT approach with the cloud gives
an enormous reduction in the execution time because of Map
Reduce technology. It applies the criteria with generation
modules to create novel test cases. The typical deployment of
ASMT integrated with cloud held in five stages: setting up test
criteria, test model designing, test suite creation with the help
of Aneka cloud infrastructure, performing test & analysing
the result. Accordingly, by combining all the above methods
improved test strategies can be designed. At the initial level of
our research, the approach seems to be better that others &
will demonstrate its effectiveness in future implementation.

Keywords— Cloud, Aneka, Model Based Testing (MBT),
Selection Criteria, Test Suite Creation, UML, Automated
Sequence Model Based Testing (ASMT);

I. INTRODUCTION

Testing of the software requires more than half of the
complete cost of software development. So it is a complex
process & needs to be reduced by an automated test
generation system One approach to do this would be to
produce input data to the program to be tested program-
based test data generation [2]. The primary issue we face
amid testing is dealing with the huge number of test cases
we have to make and execute. A standout amongst the most

imperative components in a testing environment is an
automatic test data generator, a system that automatically
produces test data for a given program. For better results
test coverage criteria are additionally included in this
automated component. It characterizes the rules used to
produce test cases from the software model. There are two
sorts of criteria: data flow and control-flow. They
characterize the effort and the nature of the results created
automatically by an MBT approach [1]. During the time a
few endeavours in automatic test data generations have
been made. The thought of path testing is to produce a
rundown of test sets that capture all conceivable paths of
component parameter values from every parameter. We
proposed another strategy, how the modelling of
determination of system could be tested proficiently
utilizing automated sequence model based testing (ASMT)
integrated with the cloud. It alludes to the process and
techniques for the automatic deduction of abstract test cases
from abstract formal models and designs, the creation of
concrete tests from abstract tests, and the manual or
automated execution of the ensuing concrete test cases.

UML is a capable modelling language used to speak to
the research problems outwardly. A ton of literature is
accessible for modelling problems by the utilization of
UML; however constrained research papers are accounted
for in literature on applications of UML for the association
path utilizing sequence model problems [3]. By the
utilization of UML, path based software testing problems
can be fathomed and performance can be judged in the
wake of modelling of the issue. We show the proposed
UML based design process architecture which is a five
phase model development utilized for automated sequence
based path test suite creation approach. The schemas will
evaluate the diagrams in a model for sufficient test related
information. The aim, of the proposed investigation, is not
to force restrictions upon the modelling process;
notwithstanding, it is planned that our procedures will
convey to a designer, the amount of information is
sufficient to empower an automatic generation of test cases
in order to reduce the quantity of test suites.

A target of this exploration is to present a designer
with confirmation that the diagrams in a system model to
incorporate sufficient information for automatically
creating a suite of test cases by sequence based test criteria
generation [4]. There are two noteworthy aspects of the
proposed study, which will be investigated in five phase

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 488

process. The primary perspective identifies with the
testable information contained in an UML model; while the
second angle identifies with the development of a technique
to create a test suite from the procured graph data. It can be
considered as a test oracle issue which can be tackled by
distributing testing [5]. In any case a performance factor is
by all accounts unaffected. At first, as a component of the
first phase, we must figure out what information is
generally collected by requirement social occasion phase
then select a fitting design model for test case extraction.
Once the taxonomy of this generic information is created,
we must figure out which diagrams can give the necessary
information.

 In the second phase the navigational diagrams that
offer this information are recognized after that we will
apply the test data on approval apparatus to clear up the
maturity of test cases. The templates will structure some
piece of an application which creates a report on the
amount and quality of the test related information contained
in a model's outline. At that point we will explore which
techniques may be suitable for the test data extraction
process. With this approach a percentage of the accessible
information will originate from distinctive outline sorts. In
a percentage of the exceptionally viable approaches for
keyword driven & path oriented testing approach,
utilization of backtracking main focus. It explores the
alternative flows, for robotizing manual tests in the
connection of keyword-driven automation [6]. The moment,
all the information is generally assembled, we evaluate the
result through injecting some deficiency in software &
analyse our ASMT integrated with cloud , architecture for
these flaw detection Once the information is concentrated
we will create a test suite organize, that will empower the
execution of test cases against the SUT. At long last, we
then evaluate our technique for effectiveness and efficiency,
against other random test case generation systems.

BACKGROUND

Testing software is an essential & complicated process
of SDLC which is quite expensive. In research and industry
the primary concern for the practitioners is to focus on
finding automatic cost-effective software testing and
debugging techniques. Industry the essential concern for
the practitioners is to concentrate on finding automatic
cost-effective software testing and debugging techniques.
Keeping up high fault detection and localization capacity
will ensure top notch software productions. Nowadays
software testing, research principally concerns such issues
as test coverage criterion design, test generation problem,
test oracle problem, the regression testing problem and
fault localization problems. Among these issues, the test
generation problem is deemed to be an important issue in
software testing research [7]. Different approaches are
developed to solve the above mentioned issues, few of
them are PSO (Particle Swarm Optimization) [8], ACO
(Ant Colony Optimization) [9], genetic algorithm [10] etc.
(A) The Purpose of the Study

The focus of study will be to investigate and develop
strategies and techniques to derive effective test cases from

system-level, Automated Sequence Model Based Testing
(ASMT) along with the execution time detection and effort
to reduce the time involved in calculation of test suites. The
focus will be on determining which combination of UML
diagrams, and their associated constraints, may be used to
automatically, or semi-automatically, generate test cases for
path oriented interaction testing. Prototype tools will be
developed in future to demonstrate the techniques and
strategies derived from the proposed investigation.
In summary, the study aims to:
a) Determine what information is necessary to test the

integration of components in the process of system
composition;

b) Given item 1, investigate which individual or
combination of UML diagram types, offer sufficient
information to generate test cases; The results of this
aim, will affect aspects of activities 1 to 5 in the figure

c) Develop a strategy that reports on the amount of
testable information contained in a model.

d) Develop a UML based technique for information
extraction using power and efficient cloud
infrastructure based on the information required for
component integration, from single and multiple UML
diagram types;

e) Evaluate our overall strategy and techniques.

(B) Why UML & path testing?

UML based path testing approach is an innovative and
high-value approach compared to more conventional
functional testing approaches. The main expected benefits
of ASMT may be summarized as follows:
 It gives QoS functional requirements:
 Complete test generation and testing coverage:
 The fully automatic process reduces the tester’s efforts.

(C) Why cloud integration?
In software engineering test case generation and evaluation
is the main key to quality assurance. Analysis of test cases
may give high quality softwares. In fact the process of test
case generation and execution is complex task since it
involves many iterations and decisions on the available set
of parameters to choose appropriate set of test cases.
Although automated test case generation process reduces
the work but it also requires computation time and
infrastructure. The advantage of automated process is only
when it generate output efficiently and effectively.
Integration of this process with cloud infrastructure may
help to get better results on a large set of parameters as an
input. Cloud composites of a powerful infrastructure based
on map and reduce approach will definitely be having
advantage over traditional approach to calculate the test
cases.
 Understanding Testing
 It is the process of identifying the bugs & errors to
overcome the futuristic problems. It is a step by step
process through which generates the test cases. At the start
the test strategy is decided to identify the boundaries of
testable information. After which the requirements need to
be finalized. On the behalf of this information, estimations
are made about the coverage, cost & efforts.

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 489

Figure 1: Test Development and Execution Process scheme.

Planning & estimation are done simultaneously. Test
design is the next phase by which final test generation is
measured which later on gives the outer. It gives the result
which is formally analysed & provides the needful in
developing. After all the above process is completed
execution & reporting is done for correctly generated test.
The above process is developed & continuously assessed
through few measurement parameters. Figure 1 shows the
detailed process of test development & execution.
 Understanding Aneka Cloud and Map Reduce
 Aneka permits servers and desktop PCs to be
connected together to structure an effective computing
infrastructure. Aneka is a workload distribution and
administration stage that quickens applications in
Microsoft .NET framework environments. It disentangles
the improvement of distributed applications by giving: an
accumulation of diverse routes for communicating the
rationale of distributed applications, a solid infrastructure
that deals with the distributed execution of applications,
and a set of cutting edge peculiarities, for example, the
capacity to hold and value reckoning hubs and to
incorporate with existing cloud infrastructures, for example,
Amazon Ec2[23].Aneka gives a flexible and extensible
environment which runs numerous applications all the
while and backings complex models and conditions inside
those applications.
 Map Reduce Overview
Map Reduce is triggered by map and reduce operations in
functional languages, such as Lisp. This model abstracts
computation problems through two functions: map and
reduce. All problems formulated in this way can be
parallelized automatically. All data processed by Map
Reduce are in the form of key/value pairs. The execution
happens in two phases. In the first phase, a map function is
invoked once for each input key/value pair and it can
generate output key/value pairs as intermediate results. In
the second one, all the intermediate results are merged and
grouped by keys. The reduce function is called once for
each key with associated values and produces output values
as final results [22].
 Map and Reduce
A map function takes a key/value pair as input and
produces a list of key/value pairs as output[22]. The type of
output key and value can be different from input key and
value:

map::(key1,value1) => list(key2,value2)

A reduce function takes a key and associated value list as
input and generates a list of new values as output:

reduce::list(key2,value2) => list(value3)
 Map Reduce Execution
A Map Reduce application is executed in a parallel manner
through two phases. In the first phase, all map operations
can be executed independently with each other. In the
second phase, each reduce operation may depend on the
outputs generated by any number of map operations.
However, similar to map operations, all reduce operations
can be executed independently. From the perspective of
dataflow, Map Reduce execution consists of m independent
map tasks and r independent reduce tasks, each of which
may be dependent on m map tasks. Generally the
intermediate results are partitioned into r pieces for r reduce
tasks. The Map Reduce runtime system schedules map and
reduce tasks to distributed resources. It manages many
technical problems: parallelization, concurrency control,
network communication, and fault tolerance. Furthermore,
it performs several optimizations to decrease overhead
involved in scheduling, network communication and
intermediate grouping of results.[22]

II. RELATED STUDY

Literature gives prior views of code behaviour after
complete connections are established. Use of program paths
to capture underlying program behaviour is evidenced
which try to achieve path coverage in test-suite
construction. Research As we know that the program
follows a path & constitutes a unit of interconnected
modules to each other. It also gives the behaviour of
software codes. Thus to identify the bugs earlier before
actual development starts, design diagrams need to be taken
into consideration.. Hence, any method which covers
various possible behaviours of a given program while
avoiding path enumeration can be extremely useful for
software testing. Various researchers had worked on the
path based selection criteria for testing. Few of them give
their work as:
 In 2011, G. Mohankumar et. al. Proposes a data mining
concepts that are designed and used to generate test cases.
The Tool generates a novel automated test case that is
much superior, less complex and easier to implement in any
Testing system. Where in this Tool, information from the
UML Class diagram extracted and mapped, tree structure is
formed with the help of those information’s, Genetic
Algorithm implemented as data mining technique, where
Genetic crossover operator applied to discover all patterns
and Depth First Search algorithm implement to Binary
tree’s formed to represent the knowledge i.e., test cases.
The path coverage criterion is an important concept to be
considered in test case generation is concerned [13].
 Monalisha Khandai et. al. in 2011 presents a novel
approach of generating test cases for concurrent systems
with the help of UML Sequence Diagram [12]. The
approach consists of transferring the Sequence Diagram
into a Concurrent Composite Graph (CCG). The CCG is
traversed by an effective graph traversing technique like
BFS (Breath-First-Technique) and DFS (Depth-First-search)
using message sequence path criteria to generate the test

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 490

cases for concurrent systems. The proposed approach is
applied to concurrent systems for test case generation and
found to be very effective in controlling the test case
explosion problem. The generated test cases are useful to
detect interaction, scenario, as well as operational faults in
case of concurrent systems.
 In 2011, Dawei Qi et. al. developed an approach for
partitioning of program paths based on the program output
[11]. Two program paths are placed in the same partition if
they derive the output similarly, that is, the symbolic
expression connecting the output with the inputs is the
same in both paths. In this work the grouping of paths is
gradually created by a smart path exploration. An
experimental result shows the benefits of the proposed path
exploration in test-suite construction.

In this work [14], Bryce et. al. provides the first single
model that is generic enough to study GUI and web
applications together. It uses the model to define generic
prioritization criteria that are applicable to both GUI and
web applications. The ultimate goal is to evolve the model
and use it to develop a unified theory of how all EDS
should be tested. Threats to construct validity are factors in
the study design that may cause us to inadequately measure
concepts of interest. The study made simplifying
assumptions in the area of costs. In this the author also
measures the test suite prioritization. Evaluation results
show the effectiveness of the approach in the correct
manner.

This paper [15] deals with automatic generation of
feasible independent paths and software test suite
optimization using artificial bee colony (ABC) based novel
search technique. In this approach, ABC combines both
global search methods done by scout bees and local search
method done by employing bees and onlooker bees. The
parallel behavior of these three bees makes generation of
feasible independent paths and software test suite
optimization faster. Test Cases are generated using test path
sequence comparison method as the fitness value objective
function. The paper also presents an approach for the
automated generation of feasible independent test path
based on the priority of all edge coverage criteria. Finally,
this paper compares the efficiency of ABC based approach
with various approaches.

This paper presents a novel approach to generate the
automated test paths [17]. Due to the delay in the
development of software, testing has to be done in a short
time. This led to automation of testing because its
efficiency and also requires less manpower. In this
proposed approach, by using one of the most standard
Unified Modelling Language (UML) Activity Diagram,
construct the Activity Dependency table (ADT), then
generate the Test paths. Then the test paths are prioritized
by using the Tabular search algorithm. The prioritized test
path can be used in system testing, regressing testing and
integration testing. Then also from the Cyclomatic diagram
to check the efficiency of the test scenario.

In 2012 Nirpal et. al. in [16] shows that the genetic
algorithms can be used to automatically generate test cases
for path testing. Using a triangle classification program as
an example, experiment results show that Genetic

Algorithm based test data can more effectively and
efficiently than the existing method does. The quality of
test cases produces by genetic algorithms is higher than the
quality of test cases produced by random way because the
algorithm can direct the generation of test cases to the
desirable range fast. This paper shows that genetic
algorithms are useful in reducing the time required for
lengthy testing meaningfully by generating test cases for
path testing.

In 2013 Hemmati, Archuri & Briand et. al. proposes a
novel approach for diverse model based test case
generation. It selects a subset of the generated test suite in
such a way that it can be realistically executed and
analyzed within the time and resource constraints, while
preserving the fault revealing power of the original test
suite to a maximum extent. In this article, to address this
problem, we introduce a family of similarity-based test case
selection (STCS) techniques for test suites generated from
state machines. The paper also proposes a method to
identify optimal tradeoffs between the number of test cases
to run and fault detection.

In 2013, literature analysis by Rupender & Vinay et. al.
present in [18] an overview of Model based slicing,
including the various general approaches and techniques
used to compute slices. To understand and test a large
software product is a very challenging task. One way to use
this is program slicing technique that decomposes the large
programs into smaller ones and another is a model based
slicing that decomposes the large software architecture
model into smaller models at the early stage of SDLC
(Software Development Life Cycle). From the given
literature this has been listed out that for model based
slicing techniques, there is the use of dependency relation,
control and data flow, UML/OCL constraints, model
language are present in literature with great emphasis on
dependency relation.

In 2013, an orchestrated survey of the most prominent
techniques for automatic generation of software test cases,
reviewed in self-standing sections proposed in [19]. The
techniques presented include: (a) structural testing using
symbolic execution, (b) model-based testing, (c)
combinatorial testing, (d) random testing and its variety of
adaptive random testing, and (e) search-based testing. Each
section is contributed by world renowned active researchers
on the technique, and briefly covers the basic ideas
underlying the technique, the current state of art, a
discussion of the open research problems, and a perspective
of the future development in the approach. As a whole, the
paper aims at giving an introduction, up-to-date and
(relatively) short overview of research in automatic test
case generation, while ensuring comprehensiveness and
authoritativeness.

III. PROBLEM IDENTIFICATION

Model based software testing generates test cases
based on models of the specifications. Models preserve the
essential information from requirement specification and
are base for the final implementation. However, in order to
generate complete and effective test cases for functional
and system testing, behavioural models are necessary.

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 491

Therefore, in MBT, behavioural models are used at the start
in order to determine the valid test scenarios of a system
from which the relevant test cases are then selected. The
UML Sequence Diagram is one of several behavioural
diagrams in UML with particular strengths in modelling the
object and control flows aspects of a system. One of the
key features of the AD is the built-in modelling support for
concurrency and synchronization. It can specify multiple
sequences of operations executing concurrently and control
their execution order with built-in fork and join constructs.

However, there is bunches of modelling language, for
example, UML, SDL, Z- Specification, we will utilize
UML as a test model, which is a semi formal modelling
language. Deficiency detection using test cases got from
imprecise and ambiguous models could be extremely
troublesome. Developing a model at the privilege level of
abstraction for effective testing is one of the main
difficulties for model-based testing. Early generation of test
case must be conceivable, however this model based testing
yet extracting the data obliged an intermediate graph
development will increase the trouble of cost and efforts.
Automated test generation in model-based testing can
rapidly generate an extensive number of test cases.
Notwithstanding, the increase in test cases does not
improve the quality of the test suite fundamentally and may
compromise its efficiency. Normally, the effectiveness of a
test suite is measured in terms of satisfying test
requirements (i.e. Faults & coverage) and the efficiency is
measured by the cost to attain the test requirements.
In summary, the research aims:

1. To understand the automatic Test Case Generation
Process

2. To develop early test case generation strategy
3. To use Aneka cloud infrastructure to evaluate the

best test case set from the given set of parents
4. To reduce the Test Suite size, complexity & cost
5. To extract, test data from different design

diagrams (UML)
Considering the above mentioned issues this work proposes
a new Automated Sequence Model Based Testing (ASMT)
strategy. The problem identified with this approach is that
multiple object accessing the same function at the same
time cannot be handled .It also not gives any of the priority
to use for the high priority test case. Also for the above
described methodical construction of composite graph is
necessary which seems to restrict us and also increases an
overhead.

IV. PROPOSED APPROACH

 The main problem with testing is about managing the
expansive number of automated test suite creation with
smaller size & less complexity. Consequently, we are
focusing on automatic and effective test case handling
concept taking in mind the early generation of test cases.
To accomplish the above basic requirements, we proposed
new design architecture of Automated Sequence Mode
Based Testing (ASMT) to accomplish how diverse
combinations of specification of system could be tested
efficiently. It alludes to the process and techniques for the
automatic derivation of abstract test cases from a formal

model, the generation of concrete tests from abstract tests,
and the manual or automated execution of the resulting
concrete test cases from proposed framework.
 The typical deployment of ASMT experiences five
stages .It begins with setting up the test criteria for most
astounding priority tests or to guarantee great coverage of
the system behaviour. At that point we design a test model
which speaks to the expected behaviour of the system
under test (SUT), standard modelling language, such as
UML are utilized to formalize the control points and
perception points of the system , expected dynamic
behaviour of the system. Next, for automated test suite
creation, we apply all the above collected subtle elements
to our next proposed enhanced ASMT based interaction
algorithm for path oriented test generation.
 In this each generated abstract test case is typically a
sequence of abnormal state SUT actions, with input
parameters and expected yield values for each action of the
test store is carried out by updating the test model. Later in
the work accomplishes our test suite results with other
existing approaches and apparatuses. After all the activities
of automated test generation, we examine the result through
a continuous system. The key concern will be on
determining which combination of UML diagrams, and
their associated constraints, may be utilized to
automatically, or semi-automatically, generate test cases for
pair wise & combinatorial testing.

ASMT Architecture integrated with the cloud
A typical deployment of ASMT goes through five stages
Step-I: Setting Up Test Criteria

Usually an infinite number of possible tests could be
generated from a model. The test analyst chooses test
generation criteria to select the highest priority tests or to
ensure good coverage of the system behaviour. One
common kind of test generation criteria is based on
structural model coverage, using well known test design
strategy of path based testing. Another useful kind of test
generation criteria ensures that the generated test cases
cover all the requirements, perhaps with more tests for
requirements that have a higher level of risk so in this paper
we are combining the path wise approach with new
architecture through UML Navigational approach.
Step-II: Test Model Designing

The model, generally called the test model, represents
the expected behaviour of the system under test (SUT).
Standard modelling languages, such as the Unified
Modelling Language (UML) are used to formalize the
control points and observation points of the system, the
expected dynamic behaviour of the system.
Step-III: Test Suite Creation using cloud integration

This is an automated process that generates the
required number of high-level (abstract) test cases from the
test model using cloud infrastructure. Parameters collected
from above steps are given as an input to the compute
infrastructure, this action results in the test cases. Each
generated abstract test case is typically a sequence of high-
level SUT actions, with input parameters and expected
output values for each action of the test repository is done

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 492

by updating the test model, then automatically regenerating
the test suites.
Step-IV: Perform Tests
 Generated concrete tests are typically executed within
a standard automated test execution environment, such as
path wise interaction test tool. Alternatively, it is possible
to execute tests manually – i.e. a tester runs each generated
test on the SUT, records the test execution results, and
compares them against the generated expected outputs.
Either way, when the tests are executed on the SUT, we
find that some tests pass and some tests fail. The failing
tests indicate a discrepancy between the SUT and model,
which need to be investigated to decide whether the failure
is caused by a bug in the SUT.
Step-V: Analysing Result

Analyse the real system which is to be tested and
accepted by the user. The effectiveness of test cases can be
evaluated using a fault injection technique called mutation
analysis. Mutation testing is a process by which faults are
injected into the system to verify the efficiency of the test
cases. For this we are using pairwise approach whose
problem domain is NP Complete, so the solution must be in
accordance.

Figure 2: Design architecture of Proposed ASMT Model

 In our later research results we prove that the given
design architecture ASMT is well defined for improving
efficiency and performance through multiple parameters
(Size, Time, Complexity, Cost etc.) and use of powerful
cloud infrastructure. It is a well defined dynamic approach
for quality improvements because it provides effective
error detection at very low cost

ASMT with enhanced test generation integration with
cloud is used to increase the performance of path
interaction and model based testing in many aspects. It is
intended that our strategies will convey to a designer, how
much information is sufficient to enable automatic
generation of test cases in an optimized manner. Automated
test generation in model-based testing can quickly generate
a large number of test cases.

V. EXPECTED BENEFITS

Advantages of ASMT integrated with cloud over other
UML based combinatorial approach is an innovative and
high-value approach compared to more conventional
functional testing approaches. The main expected benefits
of ASMT integrated with cloud may be summarized as
follows:

Contribution to the quality of functional requirements:
 Modelling for test generation is a powerful means for

the detection of “holes” in the specification (undefined
or ambiguous behaviour).

 Independence from the test execution robot.

Contribution to test generation and testing coverage:
 Powerful Map Reduce based cloud infrastructure

tremendously reduces the time required to produce test
suits.

 Automated generation of test cases;
 Systematic coverage of functional behaviour;
 Automated generation and maintenance of the

requirement coverage matrix;
 Continuity of methodology (from requirements analysis

to test generation).

Contribution to test automation:
 Definition of action words (UML model operations)

used in different scripts;
 Efficient Test script generation;
 Generation of skeleton code for a library of automation

functions;
 Because of cloud integration , independence from the

test execution robot.

VI. CONCLUSION

 The thought of UML-based pair wise testing is to
utilize an explicit abstract model of a SUT and its
environment to automatically infer tests for the SUT: the
behaviour of the model of the SUT is interpreted as the
intended behaviour of the SUT. The technology of the
ASMT integrated with powerful cloud infrastructure test
case generation has matured to the point where huge scale
deployments of this technology are becoming
commonplace. The prerequisites for success, such as
qualification of the test team, integrated apparatus chain
accessibility and methods, are presently identified, and an
extensive variety of commercial and open-source tools are
accessible. Despite the fact that ASMT won't take care of
all testing problems, it is an important and valuable
technique, which brings significant advancement over the
state of the practice for functional software testing
effectiveness, and can increase productivity and improve
functional coverage.

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 493

REFERENCES
[1] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira &

Guilherme H. Travassos, “A Survey on Model-based Testing
Approaches: A Systematic Review”, in WEASELTech’07,
November 5, 2007, Atlanta Georgia, USA, ACM, ISBN 978-
1-59593-880-0/07, June 2007.

[2] Jon Edvardsson, “A Survey on Automatic Test Data
Generation”, in Proceedings of the Second Conference on
Computer Science and Engineering in Linkoping, pages
21{28.ECSEL, October 1999.

[3] Renee C. Bryce, Ajitha Rajan & Mats P.E. Heimdahl,
“Interaction Testing in Model-Based Development: Effect on
Model-Coverage”, in 13th Asia Pacific Software Engineering
Conference (APSEC'06), ISBM-0-7695-2685-3/06, Aug
2007.

[4] Usman Farooq, Chiou Peng Lam & Huaizhong Li, ”Towards
Automated Test Sequence Generation”, in Proceedings of
19th Australian Conference on Software Engineering
ASWEC 2008 (pp. 441-450). Australia: Dec 2008.

[5] Robert M. Herons, “Oracles for Distributed Testing”, in
School of Information Systems, Computing, and
Mathematics, Brunel University, Uxbridge, Middlesex, UB8
3PH, UK, 2010.

[6] Suresh Thummalapenta, Saurabh Sinha, Debdoot Mukherjee
& Satish Chandra, “Automating Test Automation”, in
Publication of IBM T.J. Watson Research Center, Sep 2011.

[7] X. Chen, Q. Gu, J. Qi and D.Chen, ” Applying Particle
Swarm Optimization to Pairwise Testing”, in IEEE 34th
Annual Computer Software and Applications
Conference, ISBN No.0730-3157/10,Oct 2010.

[8] Praveen Ranjan Srivastava & Km Baby, “Automated
Software Testing Using Meta-heuristic Technique Based on
An Ant Colony Optimization”, in International Symposium
on Electronic System Design (ISED), ISBN: 978-1-4244-
8979-4, pp 235 – 240, Dec 2010.

[9] Premal B. Nirpal & K. V. Kale, “Using Genetic Algorithm
for Automated Efficient Software Test Case Generation for
Path Testing”, in Int. J. Advanced Networking and
Applications, Volume: 02, Issue: 06, Pages: 911-915, 2011.

[10] Anuranjan Misra, Raghav Mehra, Mayank Singh, Jugnesh
Kumar & Shailendra Mishra “Novel Approach to Automated
Test Data Generation for AOP”, in International Journal of
Information and Education Technology, Vol. 1, No. 2, June
2011.

[11] Dawei Qi, Hoang D.T. Nguyen & Abhik Roychoudhury,
“Path Exploration based on Symbolic Output” in

Proceedings of ACM Conference, ESEC/FSE’11, Szeged,
Hungary, ISBN 978-1-4503-0443-6/11/09, Sep 2011.

[12] Monalisha Khandai, Arup Abhinna Acharya & Durga Prasad
Mohapatra, “A Novel Approach of Test Case Generation for
Concurrent Systems Using UML Sequence Diagram”, in
IEEE Transaction, ISBN 978-1-4244-8679-3/11, Dec 2011.

[13] A. V. K. Shanthi & Dr. G. Mohankumar, “Automated Test
Case Generation For Object Oriented Software”, in Indian
Journal of Computer Science and Engineering (IJCSE),
ISSN : 0976-5166, Vol. 2 No. 4 Aug -Sep 2011.

[14] Renee C Bryce, Sreedevi Sampath & Atif M Memon,
“Developing a Single Model and Test Prioritization
Strategies for Event-Driven Software”, in IEEE Transactions
on Software Engineering, Vol. 37, No. 1, Jan 2011.

[15] Soma Sekhara Babu Lam, M L Hari Prasad Raju, Uday
Kiran M & Swaraj Ch, “Automated Generation of
Independent Paths and Test Suite Optimization Using
Artificial Bee Colony”, in International Conference on
Communication Technology and System Design, Published
by Elsevier Ltd, ISSN 1877-7058, 2012.

[16] Premal B. Nirpal & K. V. Kale, “Comparison of Software
Test Data for Automatic Path Coverage Using Genetic
Algorithm”, in International Journal of Computer Science &
Engineering Technology (IJCSET), ISSN : 2229-3345, Vol.
1 No. 1, Sep 2012.

[17] A.V.K. Shanthi & G. MohanKumar, “A Novel Approach for
Automated Test Path Generation using TABU Search
Algorithm”, in International Journal of Computer
Applications, ISSN 0975 – 888,Volume 48– No.13, June
2012.

[18] Rupinder Singh & Vinay Arora, “Literature Analysis on
Model based Slicing”, in International Journal of Computer
Applications, ISSN 0975 – 8887, Volume 70– No.16, May
2013.

[19] Saswat Anand, Edmund Burke et. al., “An Orchestrated
Survey on Automated Software Test Case Generation”, in
Journal of Systems and Software, Feb 2013.

[20] Hadi Hemmati & Andrea Arcuri, “Achieving Scalable
Model-Based Testing Through Test Case Diversity”, in ACM
Transactions on Software Engineering and Methodology,
Vol. 22, No. 1, Article, Feb 2013.

[21] J.Srinivas1, K.Venkata Subba Reddy, Dr.A.Moiz
Qyser, " Cloud Computing Basics" published in
International Journal of Advanced Research in Computer and
Communication Engineering in Vol. 1, Issue 5, July 2012

[22] ManjraSoft white paper on "Developing MapReduce.Net
applications using Aneka 2.0" published in OCT 2010.

[23] Mr. B.Suresh Kumar, Mr. Girish Paliwal ,Mr. Manish
Raghav,Mr. Sudeep Nair, " Aneka As Paas(Cloud
Computing) " published in Journal of Computing
Technologies 2012.

Priya Purohit et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 488-494

www.ijcsit.com 494

